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Abstract. Given a modulus m, we examine the set of all points (Fi, Fi+1) ∈ Z2
m where

F is the usual Fibonacci sequence. We graph the set in the fundamental domain [0, m −

1] × [0, m − 1], and observe that as m varies, sometimes the graph appears as a random
scattering of points, but often it shows striking symmetry. We prove that in exactly three
cases (m = 2, 3, or 6) the graph shows symmetry by reflection across the line y = x. We prove
that symmetry by rotation occurs exactly when the terms 0,−1 appear half-way through a
period of F (mod m). We prove that symmetry by translation can occur in essentially one
way, and we provide conditions equivalent to the graph having symmetry by translation.

1. Introduction

Consider points of the form fi =
[

Fi

Fi+1

]

where F is the usual Fibonacci sequence, and let F =

{fi : i ∈ Z}. The sequence F , taken modulom, is periodic and it follows that the set F (mod m)
is finite. When we graph F (mod m) on the fundamental domain [0,m− 1]× [0,m− 1] for a
variety of values of m, we see that F (mod m) often displays striking symmetry.
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For example, F (mod 6) displays symmetry by reflection over the line y = x, F (mod 109)
displays symmetry by rotation, and F (mod 115) displays translational symmetry by four
nonzero translation vectors. In fact, for m in the range 2 ≤ m ≤ 1000, 166 values of m produce
symmetry by translation in F (mod m), 263 values of m produce symmetry by rotation, and
in 35 cases, both types of symmetry are present. Below we see a typical example (mod 39)
where no symmetry is present and an example (mod 265) where both rotation and translation
are evident.
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In this article we describe criteria (Theorems 2.1, 3.1, and 4.3) that allow us to efficiently
determine which, if any, symmetry is present in F (mod m), without having to plot all the
points and look at the graph. The cases for symmetry by reflection and rotation (Theorems
2.1, 3.1, Corollary 3.2) are fairly straightforward. However, handling symmetry by translation
(Lemma 4.1, Theorems 4.2, 4.3) requires significantly more care.

Of particular use in our study is the matrix U =

[

0 1
1 1

]

which has the property that

Un =

[

Fn−1 Fn

Fn Fn+1

]

. Also, U ifn = fn+i for any i, n ∈ Z.

We let π(m) denote the period of F (mod m). It follows that π(m) is also the number
of points in F (mod m). Observe Ukfn ≡ fn (mod m) if and only if π(m) | k. It turns out
that our ability to compute π(m) will play a key role in determining what kind of symmetry
F (mod m) has. We list here some basic properties of π described by Wall [4] that allow us
to compute π(m); these results will also be useful in our proofs.

(1) If m > 2, then π(m) is even.
(2) If m has prime factorization m = Πpeii , then π(m) = lcm[π(peii )], the least common

multiple of the π(peii ). Two corollaries follow from this.
(a) π([m,n]) = [π(m), π(n)], where brackets denote least common multiple.
(b) If n | m, then π(n) | π(m).

(3) If p is prime and π(p) 6= π(p2), then π(pe) = pe−1π(p). (It is conjectured that π(p) 6=
π(p2) for all primes.)

(4) If prime p ≡ ±1 (mod 10), then π(p) | p− 1. If p ≡ ±3 (mod 10), then π(p) | 2p+ 2.

So, as long as we are capable of factoring m, we can use properties (2), (3), and (4) to easily
compute π(m). See also [1] for more on the properties of π(m).

2. Symmetry by Reflection

We see that F (mod m) has symmetry by reflection across the line y = x when m = 2, 3,
or 6. Are there other moduli for which the graph of F (mod m) shows this kind of symmetry?
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Theorem 2.1. F (mod m) has symmetry by reflection across the line y = x exactly when

m = 2, 3, or 6.

Proof. By inspection, we see F (mod m) indeed has symmetry by reflection across y = x when
m = 2, 3, or 6.

Note that [ 12 ] ∈ F (mod m). Consequently, if [ 21 ] /∈ F (mod m), then we know F (mod m)
does not have reflection. By inspection, we find that [ 21 ] /∈ F (mod m) for m = 4 or 5:

F (mod 4) : 0, 1, 1, 2, 3, 1, 0, 1, 1, . . .

F (mod 5) : 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1 . . . .

If [ 21 ] ∈ F (mod m), then Un ≡ [ 2 1
1 3 ] (mod m) for some n. Comparing determinants, we

find (−1)n ≡ 5 (mod m), but for m ≥ 7, no n can satisfy this congruence. �

3. Symmetry by Rotation

We say that F (mod m) has symmetry by rotation if for any integer n, the point fn rotated
counter-clockwise one quarter turn about the origin, namely

[

0 −1
1 0

]

fn, is also in F (mod m).
While our definition is in terms of rotation about the origin, the repeating nature of the
fundamental domain [0,m− 1]× [0,m− 1] in the xy-plane makes rotation appear also about
the point (m2 ,

m
2 ).
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Theorem 3.1. F (mod 2) has symmetry by rotation. For m > 2, F (mod m) has symmetry

by rotation if and only if fπ(m)
2

≡
[

0
−1

]

(mod m).

Proof. By inspection, F (mod 2) has symmetry by rotation, so we may assume m ≥ 3 and
consequently, π(m) is even.

For ease of notation, let π = π(m); all congruences in this proof are taken modulo m.
Assume F (mod m) has symmetry by rotation. Then, since [ 01 ] ∈ F (mod m), we must also
have

[

−1
0

]

∈ F (mod m). Since U
[

−1
0

]

=
[

0
−1

]

= −f0, we must have −f0 ∈ F (mod m), and
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so Unf0 ≡ −f0 for some 0 < n < π. Thus, U2nf0 ≡ Un(−f0) ≡ f0, and it follows that π | 2n.
Since 0 < n < π, we find n = π/2. Thus, fπ

2
≡

[

0
−1

]

.

Conversely, assume fπ
2
≡

[

0
−1

]

. We will show that for any integer n, the point
[

0 −1
1 0

]

fn is

also in F (mod m). Two observations are needed. First,

f−k =

[

F−k

F−k+1

]

=

[

(−1)k+1Fk

(−1)kFk−1

]

=

[

0 (−1)k

(−1)k+1 0

]

fk−1. (3.1)

Second, since fπ
2
≡

[

0
−1

]

we get Uπ/2 ≡
[

−1 0
0 −1

]

. Thus,

Unπ/2 ≡

[

(−1)n 0
0 (−1)n

]

. (3.2)

Thus,

fnπ

2
−n−1 = Unπ/2f−n−1

= Unπ/2

[

0 (−1)n+1

(−1)n 0

]

fn by (3.1), with k = n+ 1

=

[

0 (−1)2n+1

(−1)2n 0

]

fn by (3.2)

=

[

0 −1
1 0

]

fn.

So, for any integer n,
[

0 −1
1 0

]

fn ≡ fnπ

2
−n−1 ∈ F (mod m). �

While Theorem 3.1 does not allow us to determine whether rotation exists by analyzing
only the modulus, it does give us a computationally efficient way to determine whether or
not F (mod m) has rotation. Once we know π(m), it is easy to determine if Uπ(m)/2 ≡
[

−1 0
0 −1

]

(mod m).
However, knowing whether or not F (mod m) has rotation does allow us to draw some

immediate conclusions about whether or not F (mod n) has rotation, where n is a divisor or
multiple of m.

Corollary 3.2. If F (mod m) has symmetry by rotation and n | m, then F (mod n) also has

symmetry by rotation.

Proof. We know F (mod 2) has symmetry by rotation, so assumem,n > 2. Sincem,n > 2 and

n | m, we have π(n) | π(m) and both periods are even. Thus, π(n)
2 | π(m)

2 , and so π(m)
2 = k π(n)

2
for some integer k. Now

fπ(m)
2

≡
[

0
−1

]

(mod m) ⇒ fπ(m)
2

≡
[

0
−1

]

(mod n) ⇒ f
k
π(n)
2

≡
[

0
−1

]

(mod n) .

From the last congruence, k can’t be even, so k = 2t+ 1 for some integer t. Now

f
k
π(n)
2

≡ f
tπ(n)+

π(n)
2

≡ fπ(n)
2

≡
[

0
−1

]

(mod n)

as needed. �

The converse of this corollary is not true. For example, both F (mod 5) and F (mod 7)
exhibit rotation, but F (mod 35) does not.

The contrapositive of the corollary is interesting to consider: if F (mod m) does not show
rotation, then we know that no multiple of m can produce rotation. For example, we find that
F (mod 4) does not have rotation, and so m ≡ 0 (mod 4) implies F (mod m) does not have
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rotation. Here are all the values of m < 100 for which F (mod m) does not have rotation but
for which F (mod n) does have rotation for all factors n of m:

m = 4, 11, 15, 19, 21, 29, 31, 35, 39, 51, 59, 69, 71, 79, 91, . . . .

So, modulo any multiple of any member of the above list, F will not exhibit rotation. For any
remaining modulus less than 200, F will display rotation.

4. Symmetry by Translation

We say that F (mod m) has symmetry by translation if there is some nonzero vector t ∈ Z2
m

such that for every integer i there is a corresponding integer j(i) such that fi+t ≡ fj(i) (mod m).
Curiously, whenever F (mod m) has symmetry by translation, there are four nonzero trans-

lations and they are multiples of [ 21 ] , [
1
3 ] , [

3
4 ], and [ 42 ]. We can see this in the three examples

below.
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Lemma 4.1. Let T denote the set of all translations of F (mod m). Then T is a group under

addition and T is closed under left multiplication by U .

Proof. Indeed, by virtue of what a translation is, the set of all translation is closed under
addition and integer multiplication.

Of more interest to us is the fact that if t is a translation, then Utmust also be a translation.
If there is an index function j(i) so that fi + t ≡ fj(i) (mod m) for all i, then U fi + Ut ≡
U fj(i) (mod m) for all i. In other words, fi+1 + Ut ≡ fj(i)+1 (mod m) for all i. As fj(i)+1 ∈
F (mod m) for all i, we concluded Ut is a translation. �

The following theorem shows us the form that translations must take, assuming F (mod m)
has translation.

Theorem 4.2. If F (mod m) has translation, then 5 | m and the set of all translations is

T =
{

[ 00 ] ,
m
5 [ 21 ] ,

m
5 [ 13 ] ,

m
5 [ 34 ] ,

m
5 [ 42 ]

}

.

Proof. Assume the hypothesis and suppose that t =
[

t1
t2

]

is a nonzero translation of F (mod m).
We begin by establishing several preliminary results.

(1) The only prime p for which F (mod p) has nonzero translation is p = 5.
(2) If p is prime, p | m, and p 6= 5, then p | t.
(3) If (t1, t2,m) = 1, then m = 5.

We will see (1) ⇒ (2) ⇒ (3), and (3) is useful in proving the theorem.
(1) If p is prime and t is a nonzero translation of F (mod p), then consider the cyclic

subgroup of translations generated by t, 〈t〉 = {0, t, 2t, 3t, . . . , (p − 1)t}. Now F (mod p) is
a finite set with cardinality π(p), and we can create a subset S ⊆ F (mod p) maximal with
respect to the property that no point in S can be translated by a vector in 〈t〉 to produce
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another point in S. Then the points in S, translated under the p translations in 〈t〉 result in
p disjoint sets whose union is F (mod p). Consequently, p | π(p).

It is known (see, e.g., [1] or [2]) for primes p ≡ ±1 (mod 10) that π(p) | p − 1, and for
primes p ≡ ±3 (mod 10) that π(p) | 2p + 2. These results, combined with our observation
that p | π(p), show that p has neither of these forms; the only primes remaining are p = 2 and
p = 5. By inspection, F (mod 2) has no nonzero translations but F (mod 5) does (see picture
below).

(2) Suppose t is a nonzero translation of F (mod m) and there is a prime p 6= 5 such that
p | m. Then for every integer i there is some integer j(i) such that fi + t ≡ fj(i) (mod m). As
p | m, this implies fi + t ≡ fj(i) (mod p) for all i, and so t is a translation of F (mod p). But
p 6= 5, so by (1) we conclude t ≡ 0 (mod p).

(3) Assume t =
[

t1
t2

]

is a nonzero translation of F (mod m) and that (t1, t2,m) = 1. If
p | m and p 6= 5, then by (2), p | t so (t1, t2,m) ≥ p. Thus, the only prime dividing m is 5; we
conclude m = 5e for some e ≥ 1.

Since (t1, t2, 5
e) = 1, either t1 or t2 is coprime to 5. Assume without loss of generality

that (t1, 5) = 1. (If not, then relabel t as Ut =
[

t2
t1+t2

]

and note that Ut is a translation by

Lemma 4.1.) Now t1 has an inverse modulo 5e; let α = t−1
1 t2. Now t−1

1 t = [ 1α ] ∈ T . Also,

U [ 1α ] = [ α
α+1 ] ∈ T , and α [ 1α ] = [ α

α2 ] ∈ T , and as a result, [ α
α2 ]− [ α

α+1 ] =
[

0
α2

−α−1

]

∈ T . We

will show that α2−α−1 ≡ 0 (mod 5e). For ease of notation, let β = α2−α−1. It is known [3]
that one period of F (mod m) has at most four zeros, and so there are at most four points of
the form [ 0x ] ∈ F (mod m). Since [ 01 ] ∈ F (mod 5e) and

[

0
β

]

∈ T (mod 5e), we see [ 01 ],
[

0
β+1

]

,
[

0
2β+1

]

,
[

0
3β+1

]

,
[

0
4β+1

]

∈ F (mod 5e). Thus, among these five points, there must be a repeat.

Moreover, since
[

0
−β

]

∈ T (mod 5e), one of the points
[

0
β+1

]

,
[

0
2β+1

]

,
[

0
3β+1

]

, or
[

0
4β+1

]

is

congruent to [ 01 ] (mod 5e). Consequently, either β, 2β, 3β, or 4β is congruent to 0 (mod 5e).
In all of these cases, we can conclude β ≡ 0 (mod 5e). The congruence α2 − α − 1 ≡ 0 has a
solution modulo 5 (namely, α ≡ 3), but by inspection, there is no solution modulo 25. Hence,
α2 − α − 1 ≡ 0 (mod 5e) has a solution only when e = 1. Thus, m = 5 as needed, and the
proof of (3) is complete.

We turn now to the statement of the theorem, and assume that t =
[

t1
t2

]

is a nonzero trans-
lation of F (mod m). Thus, there is some index function j(i) such that fi + t ≡ fj(i) (mod m)
for all i ∈ Z.

Let d = (t1, t2,m); write t = dt′ and m = dm′. If m′ = 1, then m = d, so t = mt′. But then
t ≡ 0 (mod m), a contradiction. Thus, m′ 6= 1. Since m′ 6= 1, and (t1, t2,m

′) = 1, we find
that t 6≡ 0 (mod m′). Moreover, we see fi + t ≡ fj(i) (mod m′), so t is a nonzero translation
of F (mod m′).

By (3), we deduce that m′ = 5. Thus, 5 | m, and t = m
5 t

′ is a nonzero translation of
F (mod 5).
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The translations of F (mod 5) are [ 0
0
] , [ 2

1
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3
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4
], and [ 4

2
].

Since m
5 6≡ 0 (mod 5), it is invertible mod 5, and so (m5 )

−1m
5 t

′ ≡ t′ is a nonzero translation
mod 5. By inspection, the nonzero translations modulo 5 are [ 21 ] , [

1
3 ] , [

3
4 ], and [ 42 ]. Thus,

t′ ∈ {[ 21 ] , [
1
3 ] , [

3
4 ] , [

4
2 ]}, and

t =
m

5
t′ ∈

{

m

5

[

2
1

]

,
m

5

[

1
3

]

,
m

5

[

3
4

]

,
m

5

[

4
2

]}

.

If t is any one of the above four nonzero vectors, then all four must be translation vectors, as
the above set is equivalent to

{

t, Ut, U2t, U3t
}

. �

By the preceding theorem, F (mod m) can have symmetry by translation only if m is a
multiple of 5. Experimentally, it seems that for most multiples of 5, F (mod m) does indeed
exhibit translation. Here are the multiples of 5 in the range 5 ≤ m ≤ 500 for which F (mod m)
does not have translation:

m = 55, 110, 155, 165, 205, 220, 305, 310, 330, 355, 385, 410, 440, 465, 495.

We turn now to those criteria on m that are equivalent to the existence of translation in
F (mod m).

Theorem 4.3. Write m = 5en with e ≥ 0 and gcd(5, n) = 1. F (mod m) has translation if

and only if e ≥ 1 and 5e - π(n).

Proof. Assume F (mod 5en) has translation. We know from Theorem 4.2 that e ≥ 1 and
the set of all translations of F (mod 5en) is T =

{

[ 00 ] ,
m
5 [ 21 ] ,

m
5 [ 13 ] ,

m
5 [ 34 ] ,

m
5 [ 42 ]

}

. Let k
be the least positive integer such that fk − f0 ∈ T . Since F (mod 5en) has translation,
k < π(5en). Modulo 5en, for any t ∈ T we see U4t ≡ t, and so, U4(fk − f0) ≡ fk − f0, that is,
fk+4 − f4 ≡ fk − f0. Thus, fk+4 − fk ≡ f4 − f0. Since f4 − f0 = [ 34 ], we find Uk [ 34 ] ≡ [ 34 ]. This
tells us that the Lucas sequence 2, 1, 3, 4, . . . taken modulo 5en has a period that divides k.
Letting πL(m) denote the period of the Lucas sequence modulo m, we get πL(5

en) | k. Thus,

πL(5
en) < π(5en).

Three results due to Wall [4, Theorems 2, 9, 5] are useful to us here, and will allow us to
express πL(5

en) in terms of π(n). First, π(5en) = [π(5e), π(n)] and πL(5
en) = [πL(5

e), πL(n)].
Second, πL(5

e) = 1
5π(5

e) and πL(n) = π(n). Third, π(5e) = 4 · 5e. Applying these results, we
see

πL(5
en) = [πL(5

e), πL(n)] =

[

1

5
π(5e), π(n)

]

=
[

4 · 5e−1, π(n)
]

.

Now if 5e | π(n), then [4 · 5e−1, π(n)] = [4 · 5e, π(n)], and so πL(5
en) = π(5en). However, this

contradicts the fact that πL(5
en) < π(5en), noted earlier. Thus, 5e - π(n), as needed.

Conversely, let us assume e ≥ 1 and 5e - π(n), and we will show that F (mod m) has a
nonzero translation. Since 5e - π(n) we find πL(5

en) = [4 · 5e−1, π(n)] = 1
5 [4 · 5e, π(n)] =
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1
5π(5

en). Let k = 1
5π(5

en). With congruences taken modulo 5en, we see Uk [ 34 ] ≡ [ 34 ] ⇒

Uk(f4 − f0) ≡ f4− f0 ⇒ fk+4 − fk ≡ f4 − f0 ⇒ fk+4− f4 ≡ fk − f0. Let t = fk − f0. Observe that
t 6≡ 0 and U4t ≡ t. Also, since k = 1

5π(5
en) = 1

5 [4 · 5
e, π(n)], we see 4 | k, and so Ukt ≡ t.

Claim: t is a translation of F (mod 5en). We will prove the claim by showing that fi + t ≡
f2ik+i for all i ≥ 0.

We first observe that
frk − f0 ≡ rt, r ≥ 0 (4.1)

since frk − f0 =
∑r−1

j=0(fjk+k − fjk) =
∑r−1

j=0 U
jk(fk − f0) =

∑r−1
j=0(U

k)jt ≡
∑r−1

j=0 t = rt. Since
f5k ≡ f0, it also follows that 5t ≡ 0.

Next, observe that U5 = [ 3 5
5 8 ] = 3I + 5U . Consequently, Ut ≡ U5t = (3I + 5U)t =

3t+ U(5t) ≡ 3t. Thus,
U it ≡ 3it, i ≥ 0. (4.2)

Now we have

f2ik+i − fi = U i(f2ik − f0)

≡ U i2it by (4.1)

≡ 2i3it by (4.2)

= 6it ≡ t since 6t ≡ t.

Thus, fi + t ≡ f2ik+i for all i ≥ 0, and t must be a translation of F (mod 5en). �

For example, F (mod 55) does not have translation since 55 = 5 · 11 and 5 | π(11) = 10.
On the other hand, F (mod 825) does have translation. In this case, 825 = 25 · 33, and
25 - π(33) = 40.
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